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1 Basic topology

1.1 Metric spaces

Definition 1.1. A set X, whose elements we shall call points, is said to be a metric space if with any two points
p and q of X there is associated a real number d(p, q), called the distance from p to q, such that

(a) d(p, q) > 0 if p ̸= q and d(p, p) = 0,

(b) d(p, q) = d(q, p),

(c) d(p, q) ≤ d(p, r) + d(r, q), for ∀r ∈ X.

Any function with these three properties is called a distance function, or a metric.

Example 1.2 (Metric spaces). The following are examples of the metric spaces:

1. the set of real numbers R with a metric d(p, q) = |p − q|,

2. a real plane R2 with a metric d(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 := ∥p − q∥ (Eucledian distance),

3. a real plane R2 with a metric d(p, q) = |p1 − q1|+ |p2 − q2| (Manhattan distance),

4. the set of probability distributions defined on the same measurable space with a metric d(P, Q) =

1√
2

(∫ (√
p(x)−

√
q(x)

)2
dx

)1/2
(Hellinger distance).

It is important to observe that every subset Y of a metric space X is a metric space in its own right, with the
same distance function. Thus, every subset of a Euclidean space is a metric space.

Definition 1.3. By the segment (a, b) we mean the set of all real numbers x such that a < x < b. By the interval
[a, b] we mean the set of all real numbers x such that a ≤ x ≤ b.

If ai < bi for i = 1, . . . , k, the set of all points x = (x1, . . . , xk) in Rk whose coordinates satisfy the inequalities
ai ≤ xi ≤ bi (1 ≤ i ≤ k) is called a k-cell. Thus, a 1-cell is an interval, a 2-cell is a rectangle, etc.

If x ∈ Rk and r > 0, the open (or closed) ball B with center at x and radius r is defined to be the set of all
y ∈ Rk such that ∥y − x∥ < r (or ∥y − x∥ ≤ r).

We call a set E ⊂ Rk convex if
λx + (1 − λ)y ∈ E

whenever x ∈ E, y ∈ E, and 0 < λ < 1. For example, balls are convex. It is also easy to see that k-cells are
convex.

Definition 1.4. Let X be a metric space. All points and sets mentioned below are understood to be elements
and subsets of X.

(a) A neighborhood of a point p is a set Nr(p) consisting of all points q such that d(p, q) < r. The number r is
called the radius of Nr(p).
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(b) A point p is a limit point of the set E if every neighborhood of p contains a point q ̸= p such that q ∈ E.
Example: take a set A := (0, 1). Point 0 is a limit point, because any open interval, say (−ε, ε), intersects
A.

(c) If p ∈ E and p is not a limit point of E, then p is called an isolated point of E. Example: take a set
A = {n−1 : n ∈ N}. Each element is an isolated point because you can take a small interval around n−1

that avoids the other fractions in the set.

(d) E is closed if every limit point of E is a point of E. Example: take A = [0, 1]. Both 0 and 1 are limit points
and both belong to the set A. A set B = (0, 1] is not closed because a limit point 0 does not belong to the
set.

(e) A point p is an interior point of E if there is a neighborhood Nr(p) of p such that N ⊂ E. Example: take
a set A = (0, 1). A point 0.5 is an interior point because there is a neighborhood around it, say, N0.1(0.5)
that belongs to the set A; if N0.1(0.5) = (0.4, 0.6) := B, we have B ⊂ A. On the other hand, if C = [0.5, 1],
0.5 is not an interior point of C, because there is no neighborhood around it that is a subset of C; some
points of that neighborhood are outside of C.

(f) E is open if every point of E is an interior point of E.

(g) The complement of E (denoted by Ec) is the set of all points p ∈ X such that p /∈ E.

(h) E is perfect if E is closed and if every point of E is a limit point of E. Example: take A = [0, 1], which is
closed with all points being limit points, so it is perfect. On the other hand, B = [0, 1] ∪ {3} is not perfect
because it contains a point 3, which is not a limit point (it is an isolated point).

(i) E is bounded if there is a real number M and a point q ∈ X such that d(p, q) < M for ∀p ∈ E.

(j) E is dense in X if every point of X is a limit point of E, or a point of E (or both).

Let us note that in R1 neighborhoods are segments, whereas in R2 neighborhoods are interiors of circles.

Theorem 1.5. Every neighborhood is an open set.

Proof. Consider neighborhood E = Nr(p), and let q be any point of E. Then there is a positive real number h
such that

d(p, q) = r − h.

For all points s such that d(q, s) < h, we have then

d(p, s) ≤ d(p, q) + d(q, s) < r − h + h = r,

so that s ∈ E. Thus, q is an interior point of E.

Theorem 1.6. If p is a limit point of a set E, then every neighborhood of p contains infinitely many points of E.

Proof. Suppose there is a neighborhood N of p which contains only a finite number of points of E. Let q1, . . . , qn
be those points of N ∩ E, which are distinct from p, and put

r = min
1≤m≤n

d(p, qm)

The minimum of a finite set of positive numbers is clearly positive, so that r > 0.
The neighborhood Nr(p) contains no point q of E such that q ̸= p, so that p is not a limit point of E. This

contradiction established the theorem.

Corollary 1.7. A finite point set has no limit points.

Theorem 1.8. A set E is open if and only if its complement is closed.

1.2 Compact sets

Definition 1.9. By an open cover of a set E in a metric space X we mean a collection {Gα} of open subsets of X
such that E ⊂ ∪αGα.

Definition 1.10. A subset K of a metric space X is said to be compact if every open cover of K contains a finite
subcover. More explicitly, the requirement is that if {Gα} is an open cover of K, then there are finitely many
indices α1, . . . , αn such that

K ⊂ Gα1 ∪ . . . ∪ Gαn .

Corollary 1.11. A set E is compact if it is both closed and bounded.
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1.3 Functions

Definition 1.12. Consider two sets A and B, whose elements may be any objects whatsoever, and suppose that
with each element x of A there is associated, in some manner, an element of B, which we denote by f (x). Then
f is said to be a function from A to B (or a mapping from A into B). The set A is called the domain of f (we also
say f is defined on A), and the elements f (x) are called the values of f . The set of all values of f is called the
range of f .

Definition 1.13. If for every y ∈ B there is at most one x ∈ A : f (x) = y, the function f is said to be a 1-1 (one-
to-one) mapping of A into B. This may also be expressed as follows: f is a 1-1 mapping of A into B provided
that f (x1) ̸= f (x2) whenever x1 ̸= x2, x1 ∈ A, x2 ∈ A.

Definition 1.14. Let A and B be two sets and let f be a mapping of A into B. If f (A) = B, we say that f maps
A onto B. If, additionally, f is 1-1, then f is one-to-one and onto (bijection).

Definition 1.15. If there exists a 1-1 mapping of A onto B, we say that A and B can be put in 1-1 correspondence,
or that A and B have the same cardinal number, or, briefly, that A and B are equivalent, and we write A ∼ B.

Definition 1.16. For any positive integer n, let Jn be the set whose elements are the integers 1, 2, . . . , n; let J be
the set consisting of all positive integers. For any set A, we say:

(a) A is finite if A ∼ Jn for some n.

(b) A is infinite if A is not finite.

(c) A is countable if A ∼ J.

(d) A is uncountable if A is neither finite nor countable.

(e) A is at most countable if A is finite or countable.

For two finite sets A and B, we evidently have A ∼ B if and only if A and B contain the same number of
elements (same cardinality). For infinite sets, however, the idea of cardinality becomes quite vague, whereas
the notion of 1-1 correspondence retains its clarity.

Example 1.17. Let A be the set of all integers. Then A is countable. Consider, the following arrangement of
the sets A and J:

A : 0, 1,−1, 2,−2, . . .
J : 1, 2, 3, 4, 5, . . .

We can, in this example, even give an explicit formula for a function f from J to A which sets up a 1-1 corre-
spondence:

f (n) =

{
n
2 if n is even,
− n−1

2 if n is odd.

Remark 1.18. A finite set cannot be equivalent to one of its proper subsets. That this is, however, possible for
infinite sets, is shown by Example 1.17, in which J is a proper subset of A.

Definition 1.19. In the following, assume that the set A is a subset of R.

(a) If there exists x ∈ R such that for every y ∈ A we have x ≥ y, then the set A is bounded from above.

(b) If there exists x ∈ R such that for every y ∈ A we have x ≤ y, then the set A is bounded from below.

(c) The supremum of A, denoted as sup A, is the smallest upper bound of the set A.

(d) The infimum of A, denoted as inf A, is the largest lower bound of the set A.

We note that the set A is bounded, if it is bounded both from below and from above, which is equivalent
to the Definition 1.4(i). If the set A is not bounded from above, then sup A = ∞, and if it is not bounded from
below, then inf A = −∞.
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2 Sequences and limits

Definition 2.1. By a sequence, we mean a function f defined on the set J of all positive integers. If f (n) = xn for
n ∈ J, it is customary to denote the sequence f by the symbol {xn}, or sometimes by x1, x2, x3, . . .. The values
of f , that is, the elements xn, are called the terms of the sequence. If A is a set and if xn ∈ A for all n ∈ J, then
{xn} is said to be a sequence in A, or a sequence of elements of A.

Note that the terms x1, x2, x3, . . . of a sequence need not be distinct.
Since every countable set is the range of a 1-1 function defined on J, we may regard every countable set

as the range of a sequence of distinct terms. Speaking more loosely, we may say that the elements of any
countable set can be “arranged in a sequence”.

Definition 2.2. For a given sequence {xn}, if xn+1 > xn for ∀n ∈ J, then the sequence is increasing. If xn+1 < xn
for ∀n ∈ J, then the sequence is decreasing. If xn+1 ≥ xn for ∀n ∈ J, then the sequence is non-decreasing. If
xn+1 ≤ xn for ∀n ∈ J, then the sequence is non-increasing.

If at least one of these four conditions is satisfied, the sequence is called monotonic.

Example 2.3. We give examples of different sequences below.

(a) A sequence that is defined via a formula for the nth term: xn =

(
2
3

)n
.

(b) A sequence that is defined recursively (Fibonacci sequence): xn = xn−1 + xn−2 for n ≥ 3, and x1 = x2 =
1.

(c) A sequence xn = (−1)n.

(d) A sequence xn = 2n.

Note that the sequence (a) is decreasing with n, while the sequence (b) is non-decreasing with n. The sequence
(c) is non-monotonic.

Definition 2.4. A sequence {xn} in a metric space X is said to converge if there is a point x ∈ X with the
following property: for every ε > 0 there is an integer N such that n ≥ N implies that d(xn, x) < ε.

In this case, we also say that {xn} converges to x, or that x is the limit of {xn}, and we write xn → x, or

lim
n→∞

xn = x.

If {xn} does not converge, it is said to diverge.

We recall that the set of all points xn (n = 1, 2, 3, . . .) is the range of {xn} . The range of a sequence may be a
finite set, or it may be infinite. The sequence {xn} is said to be bounded if its range is bounded. In the Example
2.3, (a) and (c) are bounded sequences, while (b) and (d) are not.

Example 2.5. Show that limn→∞( 2
3 )

n = 0.
We need to show that for a given ε > 0, after some n ∈ J, the distance between the elements of the sequence

and the limit 0 is smaller than ε. In other words, that there exists some N such that for all n larger than N we
have d(xn, 0) < ε. Taking the absolute value, we have |( 2

3 )
n| < ε for ∀n ≥ N, and rewriting(

2
3

)n
< ε,

log
(

2
3

)n
< log ε,

n log
(

2
3

)
< log ε,

n >
log ε

log 2/3
.

Denote the smallest integer larger than a as ⌈a⌉. Then, one can take N = ⌈n⌉, and for all n ≥ N, the inequality
n >

log ε
log 2/3 is satisfied. Then, 0 is a limit of

( 2
3
)n

.

Theorem 2.6. Every bounded, monotonic sequence converges.
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Example 2.7. Show that the sequence

xn =
1
1!

+
1
2!

+
1
3!

+ . . . +
1
n!

=
n

∑
k=1

1
k!

converges.
To show that the sequence converges, we use the Theorem 2.6, hence, it is sufficient to show that the

sequence is monotonic and bounded. To show monotonicity, note that

xn+1 = xn +
1

(n + 1)!
> xn,

so {xn} is increasing and hence monotonic. To show that it is bounded, note that

1
n!

=
1

1 · 2 · 3 · . . . · n
=

1
2 · 3 · . . . · n

≤ 1
2 · 2 · . . . · 2

=
1

2n−1 ,

with strict inequality for n > 1. x1 = 1 is finite, hence does not contradict boundedness. For n > 1, we have

xn < 1 +
1
21 +

1
22 + . . . +

1
2n−1 =

1 − (1/2)n

1 − 1/2
= 2 −

(
1
2

)n−1
< 2.

Because each element of the sequence xn for ∀n > 1 is bounded by 2, the sequence is bounded.

2.1 Limit laws (i)

Corollary 2.8. Let {xn} and {yn} are convergent sequences, and let c be a constant. Then,

(a) lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn.

(b) lim
n→∞

(xn − yn) = lim
n→∞

xn − lim
n→∞

yn.

(c) lim
n→∞

cxn = c lim
n→∞

xn.

(d) lim
n→∞

c = c.

(e) lim
n→∞

(xnyn) = lim
n→∞

xn lim
n→∞

yn.

(f) lim
n→∞

xn

yn
=

lim
n→∞

xn

lim
n→∞

yn
if lim

n→∞
yn ̸= 0.

(g) lim
n→∞

xp
n =

(
lim

n→∞
xn

)p
if p > 0 and xn > 0.

Example 2.9. Find the limit of {xn}, where

xn =
2n3 + n2 − 7n

n3 + 2n + 2
.

Rewrite the nth term of the sequence as
2 + n−1 − 7n−2

1 + 2n−2 + 2n−3 .

The limit of the numerator and the denominator respectively is

lim
n→∞

(
2 +

1
n
− 7

n2

)
= 2, lim

n→∞

(
1 +

2
n2 +

2
n3

)
= 1,

so that lim
n→∞

xn = 2.

Definition 2.10. Given a sequence {xn}, consider a sequence {nk} of natural numbers, such that n1 < n2 <
n3 < . . .. Then the sequence {xni} is called a subsequence of {xn}. If {xni} converges, its limit is called a
subsequential limit of {xn}.

The sequence {xn} converges to x if and only if every subsequence of {xn} converges to x.

Example 2.11. Consider a sequence xn = (−1)n that we know to be divergent. Now, consider two sequences
of natural numbers, {nk} = {1, 3, 5, . . .} and {mk} = {2, 4, 6, . . .}. The subsequence corresponding to {nk} is
{−1,−1,−1, . . .} with the limit −1, and the subsequence corresponding to {mk} is {1, 1, 1, . . .} with the limit
1. Hence, it is possible for subsequences to converge even though the whole sequence does not.
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2.2 Upper and lower limits

Definition 2.12. Let {xn} be a sequence of real numbers with the following property: for every real M there is
an integer N such that n ≥ N implies xn ≥ M. We then write

xn → +∞.

Similarly, if for every real M there is an integer N such that n ≥ N implies xn ≤ M, we write

xn → −∞.

Definition 2.13. Let {xn} be a sequence or real numbers. Let E be the set of numbers x such that xnk → x
for some subsequence {xnk}. This set E contains all subsequential limits as defined in the Definition 2.10, plus
possibly the numbers +∞, −∞.

Put
x⋆ = sup E, x⋆ = inf E.

The numbers x⋆ and x⋆ are called the upper and lower limits of {xn}. We use the notation

lim sup
n→∞

xn = x⋆, lim inf
n→∞

xn = x⋆.

Theorem 2.14. If sn ≤ tn for n ≥ N, where N is fixed, then

lim inf
n→∞

sn ≤ lim inf
n→∞

tn,

lim sup
n→∞

sn ≤ lim sup
n→∞

tn.

3 Continuity

3.1 Limits of functions

Definition 3.1. Let X and Y be metric spaces; suppose E ⊂ X, f maps E into Y, and p is a limit point of E. We
write f (x) → q as x → p, or

lim
x→p

f (x) = q

if there is a point q ∈ Y with the following property: for every ε > 0 there exists a δ > 0 such that

dY( f (x), q) < ε

for all points x ∈ E for which
0 < dX(x, p) < δ.

The symbols dX and dY refer to the distances in X and Y, respectively.
If X and/or Y are replaced by the real line, the complex plane, or by some Euclidean space Rk, the distances

dX , dY are of course replaced by absolute values, or by appropriate norms.

Corollary 3.2. If f has a limit at p, this limit is unique.

Definition 3.3. One can also define one-sided (left-sided and right-sided limits) by manipulating the definition
such that it considers not all x in the δ-neighborhood of p but those x that are smaller (or larger) than p:

lim
x→p−

f (x) = q,

lim
x→p+

f (x) = q.

Theorem 3.4. It holds that limx→p f (x) = q if and only if limx→p− f (x) = limx→p+ f (x) = q.
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3.2 Limit laws (ii)

Corollary 3.5. If limx→p f (x) and limx→p g(x) exist and c is a constant, then

(a) lim
x→p

( f (x) + g(x)) = lim
x→p

f (x) + lim
x→p

g(x).

(b) lim
x→p

( f (x)− g(x)) = lim
x→p

f (x)− lim
x→p

g(x).

(c) lim
x→p

(c f (x)) = c lim
x→p

f (x).

(d) lim
x→p

c = c.

(e) lim
x→p

x = p.

(f) lim
x→p

( f (x)g(x)) = lim
x→p

f (x) lim
x→p

g(x).

(g) lim
x→p

f (x)
g(x)

=

lim
x→p

f (x)

lim
x→p

g(x)
if lim

x→p
g(x) ̸= 0.

(h) lim
x→p

( f (x))n =

(
lim
x→p

f (x)
)n

, n ∈ N.

Definition 3.6. We write f (x) → +∞ as x → p, or

lim
x→p

f (x) = +∞,

if for every ε > 0, there exists δ > 0 such that f (x) > ε for every x for which 0 < |x − p| < δ. An example of
such a function is f (x) = x−1 with a limit limx→0 f (x).

3.3 Continuous functions

Definition 3.7. Suppose X and Y are metric spaces, E ⊂ X, p ∈ E, and f maps E into Y. Then f is said to be
continuous at p if for every ε > 0, there exists a δ > 0 such that

dY( f (x), f (p)) < ε

for all points x ∈ E for which dX(x, p) < δ.
If f is continuous at every point of E, then f is said to be continuous on E. It should be noted that f has to be

defined at the point p in order to be continuous at p.

We now turn to compositions of functions. A brief statement of the following theorem is that a continuous
function of a continuous function is continuous.

Theorem 3.8. Suppose X, Y, Z are metric spaces, E ⊂ X, f maps E into Y, g maps the range of f , f (E), into Z, and h
is the mapping of E into Z defined by

h(x) = g( f (x)) (x ∈ E).

If f is continuous at point p ∈ E and if g is continuous at the point f (p), then h is continuous at p.

This function h is called the composition or the composite of f and g. The notation

h = g ◦ f

is frequently used in this context.

Example 3.9. Consider two functions f (x) = x
2 and g(x) = x2. We have

(a) f ◦ g = f (g(x)) =
g(x)

2
=

x2

2
.

(b) g ◦ f = g( f (x)) =
( x

2

)2
=

x2

4
.

(c) g ◦ g = g(g(x)) = (x2)2 = x4.

Theorem 3.10. Let f and g be functions defined on the same interval. If f (x) and g(x) are continuous at p, so are
f (x) + g(x) and f (x)g(x). If g(p) ̸= 0, f (x)/g(x) is also continuous at p.
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4 Differentiation

In this section we shall confine our attention to real functions defined on intervals or segments.

Definition 4.1. Let f be defined (and real-valued) on [a, b]. For any x ∈ [a, b] form the quotient

ϕ(t) =
f (t)− f (x)

t − x
(a < t < b, t ̸= x),

and define
f ′(x) = lim

t→x
ϕ(t), (1)

provided that this limit exists.
We thus associate with the function f a function f ′ whose domain is the set of points x at which the limit

(1) exists; f ′ is called the derivative of f .
If f ′ is defined at a point x, we say that f is differentiable at x. If f ′ is defined at every point of a set E ⊂ [a, b],

we say that f is differentiable on E.
It is possible to consider right-hand and left-hand limits in (1); this leads to the definition of right-hand

and left-hand derivatives. In particular, at the endpoints a and b, the derivative, if it exists, is a right-hand or
left-hand derivative respectively.

If f is defined on a segment (a, b) and if a < x < b, then f ′(x) is defined by (4.1) and (1), as above. But f ′(a)
and f ′(b) are not defined in this case.

Theorem 4.2. Let f be defined on [a, b]. If if is differentiable at a point x ∈ [a, b], then f is continuous at x.

Proof. As t → x, we have

f (t)− f (x) =
f (t)− f (x)

t − x
· (t − x) → f ′(x) · 0 = 0.

The converse of this theorem is not true.

Example 4.3. Consider two functions,

f (x) =

{
x, x < 0,
x2, x ≥ 0,

g(x) =

{
0, x ≤ 0,
1 x > 0.

The function g(x) is discontinuous at 0, hence it is not differentiable. The function f (x) is continuous at 0, but
not differentiable. To show this, note

lim
x→0−

f (x)− f (0)
x

= lim
x→0−

x − 0
x

= 1 ̸= lim
x→0+

f (x)− f (0)
x

= lim
x→0+

x2 − 0
x

= 0.

Because one-sided derivatives are not equal, the derivative at 0, f ′(0), does not exist.

Theorem 4.4. Suppose f and g are defined on [a, b] and are differentiable at a point x ∈ [a, b]. Then f + g, f · g, and
f /g are differentiable at x, and

(a) ( f + g)′(x) = f ′(x) + g′(x).

(b) ( f · g)(x) = f ′(x)g(x) + f (x)g′(x).

(c) ( f /g)′(x) =
f ′(x)g(x)− f (x)g′(x)

g2(x)
, g(x) ̸= 0.

Example 4.5. The derivative of any constant is clearly zero. If f is defined by f (x) = x, then f ′(x) = 1.
Repeated application of (b) and (c) then shows that f (x) = xn is differentiable, and that its derivative is
f ′(x) = nxn−1, for any integer n. Thus, every polynomial is differentiable and so is every rational function,
except at the points where the denominator is zero.

8



Example 4.6. Consider f (x) = x2, g(x) = 1 + x. Then we have

f ′(x) = 2x,

g′(x) = 1,

( f + g)′(x) = (x2 + 1 + x)′ = 2x + 1,

( f · g)′(x) = (x2 · (1 + x))′ = 2x · (1 + x) + x2 = 2x + 3x2,(
f (x)
g(x)

)′
=

2x(1 + x)− x2

(1 + x)2 =
2x + x2

(1 + x)2 .

The following theorem is known as the “chain rule” for differentiation. It deals with differentiation of
composite functions and is probably the most important theorem about derivatives.

Theorem 4.7. Suppose f is continuous on [a, b], f ′(x) exists at some point x ∈ [a, b], g is defined on an interval I
which contains the range of f , and g is differentiable at the point f (x). If

h(t) = g( f (t)) (a ≤ t ≤ b),

then h is differentiable at x, and
h′(x) = g′( f (x)) f ′(x).

Example 4.8. Consider two functions, f (x) = x
2 and g(x) = x2, and their composite function h(x) =

( x
2
)2.

Then,

f ′(x) =
1
2

,

g′(x) = 2x,

h′(x) = g′( f (x)) f ′(x) =
x
2

.

4.1 Mean value theorems

Definition 4.9. Let f be a real function defined on a metric space X. We say that f has a local maximum at a
point p ∈ X if there exists δ > 0 such that f (q) ≤ f (p) for all q ∈ X with d(p, q) < ε.

Local minima are defined likewise. Our next theorem is the basis of many applications of differentiation.

Theorem 4.10. Let f be defined on [a, b]; if f has a local maximum at a point x ∈ (a, b), and if f ′(x) exists, then
f ′(x) = 0. The analogous statement for local minima is also true.

Proof. Choose δ in accordance with Definition 4.9, so that

a < x − δ < x < x + δ < b.

If x − δ < t < x, then
f (t)− f (x)

t − x
≥ 0.

Letting t → x, we see that f ′(x) ≥ 0.
If x < t < x + δ, then

f (t)− f (x)
t − x

≤ 0,

which shows that f ′(x) ≤ 0. Hence, f ′(x) = 0.

The following result is usually referred to as the mean value theorem:

Theorem 4.11. If f is a real continuous function on [a, b] which is differentiable in (a, b), then there is a point x ∈ (a, b)
at which

f ′(x) =
f (b)− f (a)

b − a
.

Theorem 4.12. Suppose f is differentiable in (a, b).

(a) If f ′(x) ≥ 0 for all x ∈ (a, b), then f is monotonically increasing.

(b) If f ′(x) = 0 for all x ∈ (a, b), then f is constant.

(c) If f ′(x) ≤ 0 for all x ∈ (a, b), then f is monotonically decreasing.
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4.2 o and O notation

Suppose we have a function f (x) with f (a) = 0 and we want to consider how quickly the function goes to
zero around a. Then ideally, we would want to find a simple function g (for example, g(x) = (x − a)n) which
also vanishes at a such that g and f are almost equal around a. The ”small-o” and ”big-o” notation expresses
this notion, but only states that f goes to zero faster than g.

Definition 4.13. We say
f (x) = O(g(x))

as x → a if there exists a constant M such that | f (x)| ≤ M |g(x)| in some punctured neighborhood of a, that is
for x ∈ (a − δ, a + δ)\{a} for some value of δ.

We say
f (x) = o(g(x))

as x → a if limx→a
f (x)
g(x) = 0. This implies that there exists a punctured neighborhood of a on which g does not

vanish.

Example 4.14. The first two examples are derived from Taylor polynomials, the rest can be checked directly:

a) ex = 1 + x +
1
2

x2 +
1
6

x3 +O(x4) as x → 0,

b)
1

1 − x
= 1 + x + x2 +O(x3) = 1 + x + x2 + o(x2) as x → 0,

c)
∣∣x3

∣∣ = O(x3) = o(x2) as x → 0,

d) cosh(x) = O (ex) = o
(

e
5
4 x
)

as x → 0,

e)
1

sin(x)
= O

(
1
x

)
= o

(
1

x
3
2

)
as x → 0.

Theorem 4.15. The following holds:

(a) f (x) = O ( f (x)).

(b) If f (x) = o (g(x)) then f (x) = O (g(x)).

(c) If f (x) = O (g(x)) then O ( f (x) + g(x)) = O (g(x)).

(d) If f (x) = O (g(x)) then o ( f (x) + g(x)) = o (g(x)).

(e) Let c ̸= 0, then c · O (g(x)) = O (g(x)) and c · o (g(x)) = o (g(x)).

(f) O ( f (x))O (g(x)) = O ( f (x)g(x)).

(g) o ( f (x))O (g(x)) = o ( f (x)g(x)).

(h) If g(x) = o(1) then 1
1+o(g(x)) = 1 + o (g(x)), and 1

1+O(g(x)) = 1 +O (g(x)).

In the case when functions f (·) and g(·) are polynomials these rules simplify to the following.

Corollary 4.16. Around 0 we have

a) xa = O(xb) for all b ≤ a, and xa = o(xb) for all b < a.

b) O(xa) +O(xb) = O
(

xmin(a,b)
)

, o(xa) + o(xb) = o
(

xmin(a,b)
)

, and

O(xa) + o(xb) =

{
o(xb), b < a,
O(xa), b ≥ a.

c) For c ̸= 0, c · O(xa) = O(xa), and c · o(xa) = o(xa).

d) xbO(xa) = O(xa+b), and xbo(xa) = o(xa+b).

e) O(xa)O(xb) = O(xa+b), O(xa)o(xb) = o(xa+b), and o(xa)o(xb) = o(xa+b).
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4.3 Differentiation of functions of several variables

So far, we have focused on functions of one variable; a straightforward extension of the differentiation ideas to
functions of several variables involves partial derivatives.

Definition 4.17. Let f : Rn → R. Then for each xi at each point x = (x1, . . . , xn) in the domain of f , the partial
derivative of f at x is

∂ f
∂xi

(x) = lim
h→0

f (x1, . . . , xi + h, . . . , xn)− f (x1, . . . , xi, . . . , xn)

h

provided that this limit exists.

5 Integration

Definition 5.1. Let f be a function defined on [a, b]. Divide the interval [a, b] into n subintervals of equal width,
∆x = (b − a)/n. Let x0, x1, . . . , xn be the endpoints of these subintervals, and let x⋆1 , . . . , x⋆n be any points in
these subintervals, so that x⋆i lies in the ith subinterval [xi−1, xi]. The definite integral of f from a to b is

∫ b

a
f (x)dx = lim

n→∞

n

∑
i=1

f (x⋆i )∆x

provided that the limit exists. If it does, we say that f is integrable on [a, b].

Sometimes instead of definite integrals, we work with indefinite integrals.

Definition 5.2. Indefinite integral (or antiderivative) of the function f is defined as∫
f (x)dx = F(x),

such that F′(x) = f (x).

Note that if F(x) is the antiderivative of f (x), then F(x) + C is also the antiderivative of f (x) for any
constant C. Thus, an indefinite integral represents the whole family of functions.

Theorem 5.3. If f is continuous on [a, b], or if f has only a finite number of jumpdiscontinuities, then f is integrable
on [a, b].

Corollary 5.4. Let f and g be integrable on [a, b], and k be a constant. Then we have

(a)
∫ b

a
kdx = k(b − a).

(b)
∫ b

a
( f (x) + g(x)) dx =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx.

(c)
∫ b

a
k f (x)dx = k

∫ b

a
f (x)dx.

(d)
∫ b

a
( f (x)− g(x)) dx =

∫ b

a
f (x)dx −

∫ b

a
g(x)dx.

(e)
∫ c

a
f (x)dx +

∫ b

c
f (x)dx =

∫ b

a
f (x)dx for some c ∈ [a, b].

(f)
∫ b

a
f (x)dx = −

∫ a

b
f (x)dx.

(g)
∫ b

a
f (x)dx ≥

∫ b

a
g(x)dx if f (x) ≥ g(x) for all x ∈ [a, b].
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Lemma 5.5 (Integration by parts). Let f and g be integrable, and assume f ′(x) and g′(x) exist for all x. Then,∫
f (x)g′(x)dx +

∫
g(x) f ′(x)dx = f (x)g(x).

For definite integrals defined on [a, b], it holds that∫ b

a
f (x)′g(x)dx +

∫ b

a
f (x)g(x)′dx = ( f (x)g(x))

∣∣∣b
a
.

Example 5.6. Consider
∫

x sin xdx. Pick f (x) = x, g(x) = − cos x. Then

∫
x sin xdx = −x cos x −

∫
− cos xdx = −x cos x + sin x + C.

Example 5.7. Consider
∫ π

0
ex sin xdx. First, pick f (x) = ex and g(x) = − cos x. Then

∫ π

0
ex sin xdx = (ex(− cos x)

∣∣∣π
0
+

∫ π

0
ex cos xdx.

Let us integrate by parts again. Now pick f (x) = ex and g(x) = sin x. Then∫ π

0
ex sin xdx = (ex(− cos x)

∣∣∣π
0
+ (ex sin x)

∣∣∣π
0
−

∫ π

0
ex sin xdx.

Regrouping, we have∫ π

0
ex sin xdx =

1
2

(
(ex(− cos x)

∣∣∣π
0
+ (ex sin x)

∣∣∣π
0

)
=

1
2

[
eπ(− cos π)− e0(− cos 0)

]
+

1
2

[
eπ sin π − e0 sin 0

]
=

eπ + 1
2

.

Lemma 5.8 (Integration by substitution). If u = g(x) is a differentiable function whose range is an interval I, and f
is continuous on I, then ∫

f (g(x))g′(x)dx =
∫

f (u)du.

If g′ is continuous on [a, b], and f is continuous on the range of u = g(x), then∫ b

a
f (g(x))g′(x)dx =

∫ g(b)

g(a)
f (u)du.

Example 5.9. Consider
∫

x3 cos(x4 + 2)dx. Let u = x4 + 2, then du = 4x3dx and dx = du/4x3. So we have

∫
x3 cos(x2 + 4)dx =

1
4

∫
cos udu =

1
4

sin u + C =
1
4

sin(x2 + 4) + C.
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