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1 Stationarity and ergodicity

Definition 1 (Strict stationarity). Series {zt}∞
t=−∞ is said to be strictly stationary if joint distribution of collec-

tion (zt, zt−1, . . . , zt−k) does not depend on t for ∀ k.

Definition 2 (Weak stationarity). Series {zt}∞
t=−∞ is said to be weakly stationary if E[zt], var [zt] and cov [zt, zt−k]

for ∀ k exist and do not depend on t.

Remark 1. Strict stationarity does not imply weak stationarity (e.g. Cauchy).

Definition 3 (Ergodicity). Series {zt}∞
t=−∞ is said to be ergodic if cov [g(zt), h(zt+k)] → 0 as k → ∞ for ∀ g and

h.

Theorem 2 (Invariance to transformations). If {zt}∞
t=−∞ is stationary and ergodic, then so is { f (zt, zt−1, . . .)}∞

t=−∞
for ∀ measurable function f .

Example 3. We list some examples of the series:

• non-stationary: yt = xt + δ · 1{t ≥ t0}, E[yt] = E[xt] for t < t0 and E[yt] = E[xt] + δ for t ≥ t0

• non-ergodic: xt = Z, where Z ∼ N (0, 1), cov [xt, xt+k] = var [Z] = 1 ↛ 0 as k → ∞

• strong white noise (SWN): {εt}∞
t=−∞ is i.i.d. series, E[εt] = 0, σ2 = var [εt]

• weak white noise (WWN): {εt}∞
t=−∞ is serially uncorrelated, E[εt] = 0, var [εt] = σ2, cov [εt, εt−j] = 0

for ∀ j ̸= 0

Example 4. Consider the Bernoulli process at ∈ {−1,+1} with P{at = +1} = 1 − P{at = −1} = 1
2 , and let

{θt}+∞
t=−∞ be the standard normal white noise independent of {at}+∞

t=−∞. Show that the process

zt = (at − at−1)
2 + θ2

t+1

is strictly stationary and ergodic. Determine its mean and order of serial correlation (you need not derive the
whole ACF).

Solution: The process zt is strictly stationary and ergodic because it is a measurable function of a jointly strictly
stationary and ergodic vector process (at, θt)

′ . The mean of both at and θt is zero, at is serially independent,
and a2

t = 1 with probability 1. Hence,

E[zt] = E[(at − at−1)
2] + E[θ2

t+1]

= E[a2
t ] + E[a2

t−1]− 2E[(atat−1)] + var [(θt+1)]

= 3.

Because zt and zt+2 are independent, the order of serial correlation cannot exceed 1. The serial correlation in
zt may come only from the a-part. Let us check if it is not zero:

cov [(zt, zt+1)] = cov
(

a2
t + a2

t−1 − 2atat−1, a2
t + a2

t+1 − 2atat+1

)
= var

(
a2

t

)
= 0.

This, despite the one-period overlap, there is in fact no serial correlation in the process.
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2 Lag operator

Definition 4 (Lag operator). Lag operator L is defined as follows:

Lxt = xt−1, LLxt = xt−2, . . . , Lkxt = xt−k.

Definition 5 (Lag polynomial). Lag polynomial Φ(L) of order k is defined as

Φ(L) = 1 − ϕ1L − . . . − ϕkLk,

so when applied to xt we have Φ(L)xt = xt − ϕ1xt−1 − . . . − ϕkxt−k.

Theorem 5 (Fundamental theorem of algebra). Φ(L) of order k can be factorized as Φ(L) = Πk
i=1(1 − ϕiL).

Example 6. Some examples follow:

• Φ(0) = 1

• Φ(1) = 1 − ϕ1 − . . . − ϕk

• Φ(L)µ = µ · Φ(1)

3 Autocorrelation function (ACF)

Definition 6 (ACF). We define the autocorrelation function as

ACF(j) =
cov [xt, xt+j]

var [xt]
.

Remark 7. ACF makes sense only for stationary and ergodic series. Stationarity is used in the denominator,
ergodicity in the numerator.

4 Standard linear processes

1. autoregression of order 1, AR(1):

xt = µ + ϕxt−1 + εt, εt ∼ WWN.

• ϕ = 1: random walk (with drift µ ̸= 0, without drift µ = 0) ⇒ xt = xt−1 + εt (non-stationarity,
non-ergodic); can write as xt = x0 + ε1 + . . . + εt ⇒ var [xt] = var [x0] + tσ2 = cov [xt, xt+k] (check
this); xt is not measurable so it does not exist as a random variable, xt = ∑∞

j=0 εt−j.

• |ϕ| < 1 (necessary stationarity condition): moments are

mx := E[xt] = E[xt−1]ϕ + µ ⇒ mx =
µ

1 − ϕ

for the mean,

σ2
x := var [xt] = var [xt−1]ϕ

2 + σ2 ⇒ σ2
x =

σ2

1 − ϕ2

for the variance, and

γx(1) := cov [xt, xt+1] = cov [xt, µ + ϕxt + εt+1] = ϕσ2
x

covariances with γx(j) = cov [xt, xt+j] = ϕjσ2
x . ACF is then ϕj.

We can also write AR(1) using the lag operator as

Φ(L)xt = µ + εt, Φ(L) = 1 − ϕL.

It follows that

xt = Φ(L)−1µ + Φ(L)−1εt

= Φ(L)−1µ +
∞

∑
j=0

ϕjεt−j

because Φ(L)−1 = ∑∞
j=0 ϕjLj by Taylor.
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2. autoregression of order p, AR(p):

xt = µ + ϕ1xt−1 + . . . + ϕpxt−p + εt, εt ∼ WWN.

Using lag operator we can write

Φ(L)xt = µ + εt, Φ(L) = 1 − ϕ1L − . . . − ϕpLp

from which follows

xt = Φ(1)−1µ +
∞

∑
j=0

ϕjεt−j.

Stationarity condition: roots of Φ(L) lie outside the unit circle. For example, for AR(1) we have 1 − ϕL =

0 ⇒ L = | 1
ϕ |⇒ |ϕ| < 1.

3. moving average MA(1):
xt = εt − θεt−1, εt ∼ WWN.

Always stationary and ergodic process, θ ∈ (−∞, ∞). Moments are

E[xt] = 0, var [xt] = (1 + θ)2σ2, cov [xt, xt+1] = −θσ2,

and ∀ |k| > 1 covariances are 0. If |θ| > 1 ⇒ non-invertible representation of MA(1). That is,

xt = εt − θεt−1 ⇒ εt = (1 − θL)−1xt =
∞

∑
j=0

θ jxt−j does not converge.

Solution: find an invertible representation (see Hamilton (1994)).

4. moving average MA(q):

xt = Θ(L)εt, εt ∼ WWN, Θ(L) := 1 − θ1L − . . . − θqLq.

Always stationary. Invertible if roots of Θ(L) lie outside the unit circle. εt is called innovation if MA(q) is
invertible.

5. ARMA(p, q):
Φ(L)xt = µ + Θ(L)εt, εt ∼ WWN.

Stationarity condition: roots of Φ(L) should be outside the unit circle. Invertibility condition: roots of
Θ(L) should be outside the unit circle. Non-reducability condition: no common roots of Φ(L) and Θ(L).

Example 8. Sum of two independent MA(1) processes is MA(1), that is, MA(1)+MA(1) = MA(1) (see Hamil-
ton (1994) for the proof).

Example 9. Sum of two independent AR(1) processes

• with equal coefficients is AR(1). That is, after summing up

(1 − πL)xt = ut

(1 − ρL)wt = ηt

we have (1 − πL)(xt + wt) = ut + ηt, which is equivalent to (1 − πL)yt = εt, that is, AR(1) process.

• with different coefficients is ARMA(2, 1). That is, after summing up

(1 − πL)(1 − ρL)xt = ut(1 − ρL)
(1 − πL)(1 − ρL)wt = ηt(1 − πL)

we have (1 − πL)(1 − ρL)(xt + wt) = ut(1 − ρL) + ηt(1 − πL). We have two independent MA(1) pro-
cesses on the right-hand side which is equal to MA(1) due to Example 8. Using the fact that (1− πL)(1−
ρL) = (1 − ϕ1L − ϕ2L2), we have

(1 − ϕ1L − ϕ2L2)yt = εt(1 − γL)

which is ARMA(2, 1) process.

Example 10. In general, AR(p) + AR(q) = ARMA(p + q, max{p, q}).
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5 Wold decomposition

Suppose {xt}∞
t=−∞ is weakly stationary. Then it can be decomposed as

xt = dt +
∞

∑
i=0

ψiεt−i,

where dt is a deterministic part, ψ0 = 1, ∑∞
i=0 ψ2

i < ∞, εt is WWN. We call εt = xt − Proj{xt|xt−1, . . .} the Wold
innovation; dt is perfectly predictable from the past, dt = Proj{dt|dt−1, . . .}.

Example 11. Some examples of the Wold decomposition:

• white noise: ηt ⇒ dt = 0, ψ0 = 1, ψj = 0 ∀ j ≥ 1,

• random variable: xt = Z, Z ∼ N (0, 1) ⇒ dt = Z, εt = 0,

• AR(1) process: (1− ϕL)xt = µ + εt, |ϕ| < 1 ⇒ xt = (1− ϕL)−1(µ + εt) = (1− ϕ)−1µ + ∑
j=0

,∞ ϕjεt−j; here,

dt = (1 − ϕ)−1µ and ψj = ϕj, j ≥ 0.
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