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1 Stationarity and ergodicity

Definition 1 (Strict stationarity). Series {z;}{> ., is said to be strictly stationary if joint distribution of collec-
tion (z¢,2¢-1,...,2;_) does not depend on f for V k.

Definition 2 (Weak stationarity). Series {z;}$>
for V k exist and do not depend on t.

_ o I8 said to be weakly stationary if [E[z;], var [z¢] and cov [z¢, z;_¢]

Remark 1. Strict stationarity does not imply weak stationarity (e.g. Cauchy).
Definition 3 (Ergodicity). Series {z;}{2
h.

Theorem 2 (Invariance to transformations). If {z;}{2 _, is stationary and ergodic, then so is { f(z¢,z¢—1,...) }io o
for ¥ measurable function f.

is said to be ergodic if cov [g(z¢), h(z44x)] — 0ask — oo for V ¢ and

—00

Example 3. We list some examples of the series:
* non-stationary: vy = x; + 6 - 1{t > to}, Ely:] = E[x] for t < tp and E[y;] = E[x;] + d for t > tg
 non-ergodic: x; = Z, where Z ~ N(0,1), cov [x;, x;,x] =var [Z] =1 -+ 0ask — oo

e strong white noise (SWN): {&;}%> _ isi.i.d. series, E[e;] = 0, 0* = var [g/]

e weak white noise (WWN): {e;} _, is serially uncorrelated, E[e;] = 0, var [e;] = 02, cov et ] =0
forVj #0
Example 4. Consider the Bernoulli process a; € {—1,+1} with P{a; = +1} = 1 —P{a; = —1} = 1, and let
{6:},-° ., be the standard normal white noise independent of {a;}*° ... Show that the process

t=—o0
2
zi = (ar—ap-1)" + 9t2+1
is strictly stationary and ergodic. Determine its mean and order of serial correlation (you need not derive the
whole ACF).

Solution: The process z; is strictly stationary and ergodic because it is a measurable function of a jointly strictly
stationary and ergodic vector process (a:, Gt)/ . The mean of both a; and 6; is zero, a; is serially independent,
and a? = 1 with probability 1. Hence,

Elzt] = E[(a—a;_1)°] +E[6}]
= E[a7] + Ela;_,] — 2E[(a:a;_1)] + var [(6141)]
= 3.

Because z; and z;,, are independent, the order of serial correlation cannot exceed 1. The serial correlation in
z; may come only from the a-part. Let us check if it is not zero:

2, 2 2, 2
cov [(zt,zt41)] = cov (at +ay_y —2aia,_q,aF +apq — 2atat+])
= var (a%) =0.

This, despite the one-period overlap, there is in fact no serial correlation in the process.



2 Lag operator

Definition 4 (Lag operator). Lag operator L is defined as follows:
Lxt =x;_1, LLxt=xt_5, ..., kat = X{_g-
Definition 5 (Lag polynomial). Lag polynomial ®(L) of order k is defined as
O(L) =1—¢L—...—¢lLF,

so when applied to x; we have ®(L)x; = x¢ — p1xp-1 — ... — Xk
Theorem 5 (Fundamental theorem of algebra). (L) of order k can be factorized as (L) = IT5_, (1 — ¢;L).
Example 6. Some examples follow:

¢ ®(0)=1

e (1) =1—¢1—...— ¢

* P(L)p=p-2()

3 Autocorrelation function (ACF)

Definition 6 (ACF). We define the autocorrelation function as

. COV [Xp, Xpyi
ACE(j) = cov [xt, Xes]
var [x
Remark 7. ACF makes sense only for stationary and ergodic series. Stationarity is used in the denominator,
ergodicity in the numerator.

4 Standard linear processes

1. autoregression of order 1, AR(1):
Xt =u+¢x—1+e, e~ WWN.

* ¢ = 1: random walk (with drift 4 # 0, without drift 4 = 0) = x; = x;_1 + & (non-stationarity,
non-ergodic); can write as X = xg + €1 + ... + & = var [x;] = var [xo] + to? = cov [xt, x;,;] (check

this); x; is not measurable so it does not exist as a random variable, x; = 2]9"’:0 €t j-

* |¢| < 1 (necessary stationarity condition): moments are

my = Ex;] = E[x;_1]p + p = my = ﬁ
for the mean,
02 :=var [x;] = var [x;_1]¢* + 0 = 02 =

o
_1_4)2

for the variance, and
Yx(1) := cov [x1, Xp41] = OV [xs, p + ¢ + €41] = po2
covariances with 7, (j) = cov [xt, x44;] = ¢/o2. ACF is then ¢/.
We can also write AR(1) using the lag operator as
P(L)xt =p+e, P(L)=1-¢L.
It follows that
xp= (L) u+d(L) e

=o(L) 'u+ Y e
j=0

because ®(L) ! = Yi%o ¢/ L by Taylor.



2. autoregression of order p, AR(p):
Xt =p+Prxp1+...+Ppxi—pt+e, &~ WWN.
Using lag operator we can write
O(L)xt =p+e, PL)=1—¢pL—...—¢ppLF
from which follows

i =0(1) u+ Y ples ;.
j=0

Stationarity condition: roots of ®(L) lie outside the unit circle. For example, for AR(1) we have 1 — ¢L =
O:>L:|%|:>|4>\ <1

3. moving average MA(1):
Xt = & — 9€t,1, & ~ WWN.

Always stationary and ergodic process, § € (—o0,00). Moments are
E[x;] =0, var[x]=(1+ 9)2(72, cov [x¢, Xp11] = —60?,

and V |k| > 1 covariances are 0. If |#| > 1 = non-invertible representation of MA(1). That is,

[ee]
xp=¢—0e 1=¢e=(1- 9L)*1xt = 2 9]xt_]- does not converge.
=0

Solution: find an invertible representation (see Hamilton (1994)).

4. moving average MA(9):
Xt = @(L)St, E ~ WWN, @(L) =1- glL — ... Gqu.

Always stationary. Invertible if roots of @(L) lie outside the unit circle. ¢ is called innovation if MA(g) is
invertible.

5. ARMA(p, 9):
CD(L)xt = U + @(L)gt, Et ~ WWN.

Stationarity condition: roots of ®(L) should be outside the unit circle. Invertibility condition: roots of
©(L) should be outside the unit circle. Non-reducability condition: no common roots of ®(L) and O(L).

Example 8. Sum of two independent MA(1) processes is MA(1), thatis, MA(1) + MA(1) = MA(1) (see Hamil-
ton (1994) for the proof).

Example 9. Sum of two independent AR(1) processes
¢ with equal coefficients is AR(1). That is, after summing up
(1—mL)x = uy
(1—pL)w =n
we have (1 — 7tL) (x; + w¢) = us + 3¢, which is equivalent to (1 — 7wL)y; = €, that is, AR(1) process.
¢ with different coefficients is ARMA(2, 1). That is, after summing up
(1—mL)(1—pL)x; = us(1 —pL)
(1—mL)(1 = pL)ws = n4(1 — 7tL)
we have (1 — tL)(1 — pL)(x¢ +w¢) = us(1 — pL) 4+ 17¢(1 — tL). We have two independent MA(1) pro-
cesses on the right-hand side which is equal to MA(1) due to Example 8. Using the fact that (1 — 7zL)(1 —
pL) = (1 — ¢1L — ¢»L?), we have
(1= ¢1L — g2L?)ys = &s(1 — L)
which is ARMA(2, 1) process.
Example 10. In general, AR(p) + AR(7) = ARMA(p + g, max{p, q}).



5 Wold decomposition
Suppose {x:}7> _, is weakly stationary. Then it can be decomposed as
Xt =di + i Pigt—i,
i=0

where d; is a deterministic part, 9 = 1, Yo lpl-z < 0, gr is WWN. We call &; = x¢ — Proj{x¢|x;_1, ...} the Wold
innovation; d; is perfectly predictable from the past, d; = Proj{d;|d;_1,...}.
Example 11. Some examples of the Wold decomposition:

® white noise: 4y = d; =0, g = 1,1,[7]- =0Vj>1,

e random variable: xt = Z, Z ~ N(0,1) = dy = Z, & =0,

o AR(1) process: (1 —¢L)x; = p+e, |p| <1=>x=(1—¢L) pu+e)=(1—¢) u+) % (,i)jst,j; here,
j=0
dy=(1—¢)'pand y; = ¢/,j > 0.
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