

Instructor: Stanislav Anatolyev / Yaroslav Korobka Course: Econometrics of Macro and Financial Data Discussion Session: **1** Date: October 10, 2025

1 Stationarity and ergodicity

Definition 1 (Strict stationarity). Series $\{z_t\}_{t=-\infty}^{\infty}$ is said to be strictly stationary if joint distribution of collection $(z_t, z_{t-1}, \dots, z_{t-k})$ does not depend on t for $\forall k$.

Definition 2 (Weak stationarity). Series $\{z_t\}_{t=-\infty}^{\infty}$ is said to be weakly stationary if $\mathbb{E}[z_t]$, var $[z_t]$ and cov $[z_t, z_{t-k}]$ for $\forall k$ exist and do not depend on t.

Remark 1. Strict stationarity does not imply weak stationarity (e.g. Cauchy).

Definition 3 (Ergodicity). Series $\{z_t\}_{t=-\infty}^{\infty}$ is said to be ergodic if $\operatorname{cov}\left[g(z_t),h(z_{t+k})\right]\to 0$ as $k\to\infty$ for $\forall g$ and h.

Theorem 2 (Invariance to transformations). If $\{z_t\}_{t=-\infty}^{\infty}$ is stationary and ergodic, then so is $\{f(z_t, z_{t-1}, \ldots)\}_{t=-\infty}^{\infty}$ for \forall measurable function f.

Example 3. We list some examples of the series:

- non-stationary: $y_t = x_t + \delta \cdot \mathbb{1}\{t \ge t_0\}$, $\mathbb{E}[y_t] = \mathbb{E}[x_t]$ for $t < t_0$ and $\mathbb{E}[y_t] = \mathbb{E}[x_t] + \delta$ for $t \ge t_0$
- non-ergodic: $x_t = Z$, where $Z \sim \mathcal{N}(0,1)$, cov $[x_t, x_{t+k}] = \text{var } [Z] = 1 \rightarrow 0$ as $k \rightarrow \infty$
- strong white noise (SWN): $\{\varepsilon_t\}_{t=-\infty}^{\infty}$ is i.i.d. series, $\mathbb{E}[\varepsilon_t] = 0$, $\sigma^2 = \text{var}[\varepsilon_t]$
- weak white noise (WWN): $\{\varepsilon_t\}_{t=-\infty}^{\infty}$ is serially uncorrelated, $\mathbb{E}[\varepsilon_t] = 0$, var $[\varepsilon_t] = \sigma^2$, cov $[\varepsilon_t, \varepsilon_{t-j}] = 0$ for $\forall j \neq 0$

Example 4. Consider the Bernoulli process $a_t \in \{-1, +1\}$ with $\mathbb{P}\{a_t = +1\} = 1 - \mathbb{P}\{a_t = -1\} = \frac{1}{2}$, and let $\{\theta_t\}_{t=-\infty}^{+\infty}$ be the standard normal white noise independent of $\{a_t\}_{t=-\infty}^{+\infty}$. Show that the process

$$z_t = (a_t - a_{t-1})^2 + \theta_{t+1}^2$$

is strictly stationary and ergodic. Determine its mean and order of serial correlation (you need not derive the whole ACF).

Solution: The process z_t is strictly stationary and ergodic because it is a measurable function of a jointly strictly stationary and ergodic vector process $(a_t, \theta_t)'$. The mean of both a_t and θ_t is zero, a_t is serially independent, and $a_t^2 = 1$ with probability 1. Hence,

$$\mathbb{E}[z_t] = \mathbb{E}[(a_t - a_{t-1})^2] + \mathbb{E}[\theta_{t+1}^2]$$

$$= \mathbb{E}[a_t^2] + \mathbb{E}[a_{t-1}^2] - 2\mathbb{E}[(a_t a_{t-1})] + \text{var}[(\theta_{t+1})]$$

$$= 3.$$

Because z_t and z_{t+2} are independent, the order of serial correlation cannot exceed 1. The serial correlation in z_t may come only from the a-part. Let us check if it is not zero:

$$cov [(z_t, z_{t+1})] = cov (a_t^2 + a_{t-1}^2 - 2a_t a_{t-1}, a_t^2 + a_{t+1}^2 - 2a_t a_{t+1})$$
$$= var (a_t^2) = 0.$$

This, despite the one-period overlap, there is in fact no serial correlation in the process.

2 Lag operator

Definition 4 (Lag operator). Lag operator *L* is defined as follows:

$$Lx_t = x_{t-1}, \quad LLx_t = x_{t-2}, \quad \dots, \quad L^kx_t = x_{t-k}.$$

Definition 5 (Lag polynomial). Lag polynomial $\Phi(L)$ of order k is defined as

$$\Phi(L) = 1 - \phi_1 L - \ldots - \phi_k L^k,$$

so when applied to x_t we have $\Phi(L)x_t = x_t - \phi_1 x_{t-1} - \ldots - \phi_k x_{t-k}$.

Theorem 5 (Fundamental theorem of algebra). $\Phi(L)$ of order k can be factorized as $\Phi(L) = \prod_{i=1}^{k} (1 - \phi_i L)$.

Example 6. Some examples follow:

- $\Phi(0) = 1$
- $\Phi(1) = 1 \phi_1 \ldots \phi_k$
- $\Phi(L)\mu = \mu \cdot \Phi(1)$

3 Autocorrelation function (ACF)

Definition 6 (ACF). We define the autocorrelation function as

$$ACF(j) = \frac{\operatorname{cov}\left[x_{t}, x_{t+j}\right]}{\operatorname{var}\left[x_{t}\right]}.$$

Remark 7. ACF makes sense only for stationary and ergodic series. Stationarity is used in the denominator, ergodicity in the numerator.

4 Standard linear processes

1. autoregression of order 1, AR(1):

$$x_t = \mu + \phi x_{t-1} + \varepsilon_t$$
, $\varepsilon_t \sim WWN$.

- $\phi = 1$: random walk (with drift $\mu \neq 0$, without drift $\mu = 0$) $\Rightarrow x_t = x_{t-1} + \varepsilon_t$ (non-stationarity, non-ergodic); can write as $x_t = x_0 + \varepsilon_1 + \ldots + \varepsilon_t \Rightarrow \text{var} [x_t] = \text{var} [x_0] + t\sigma^2 = \text{cov} [x_t, x_{t+k}]$ (check this); x_t is not measurable so it does not exist as a random variable, $x_t = \sum_{j=0}^{\infty} \varepsilon_{t-j}$.
- $|\phi| < 1$ (necessary stationarity condition): moments are

$$m_x := \mathbb{E}[x_t] = \mathbb{E}[x_{t-1}]\phi + \mu \Rightarrow m_x = \frac{\mu}{1-\phi}$$

for the mean,

$$\sigma_x^2 := \text{var}[x_t] = \text{var}[x_{t-1}]\phi^2 + \sigma^2 \Rightarrow \sigma_x^2 = \frac{\sigma^2}{1 - \phi^2}$$

for the variance, and

$$\gamma_x(1) := \cos [x_t, x_{t+1}] = \cos [x_t, \mu + \phi x_t + \varepsilon_{t+1}] = \phi \sigma_x^2$$

covariances with $\gamma_x(j) = \text{cov } [x_t, x_{t+j}] = \phi^j \sigma_x^2$. ACF is then ϕ^j .

We can also write AR(1) using the lag operator as

$$\Phi(L)x_t = \mu + \varepsilon_t$$
, $\Phi(L) = 1 - \phi L$.

It follows that

$$x_t = \Phi(L)^{-1}\mu + \Phi(L)^{-1}\varepsilon_t$$
$$= \Phi(L)^{-1}\mu + \sum_{i=0}^{\infty} \phi^i \varepsilon_{t-i}$$

because $\Phi(L)^{-1} = \sum_{j=0}^{\infty} \phi^j L^j$ by Taylor.

2. autoregression of order p, AR(p):

$$x_t = \mu + \phi_1 x_{t-1} + \ldots + \phi_p x_{t-p} + \varepsilon_t, \quad \varepsilon_t \sim WWN.$$

Using lag operator we can write

$$\Phi(L)x_t = \mu + \varepsilon_t, \quad \Phi(L) = 1 - \phi_1 L - \dots - \phi_p L^p$$

from which follows

$$x_t = \Phi(1)^{-1} \mu + \sum_{i=0}^{\infty} \phi^i \varepsilon_{t-j}.$$

Stationarity condition: roots of $\Phi(L)$ lie outside the unit circle. For example, for AR(1) we have $1 - \phi L = 0 \Rightarrow L = |\frac{1}{\phi}| \Rightarrow |\phi| < 1$.

3. moving average MA(1):

$$x_t = \varepsilon_t - \theta \varepsilon_{t-1}, \quad \varepsilon_t \sim WWN.$$

Always stationary and ergodic process, $\theta \in (-\infty, \infty)$. Moments are

$$\mathbb{E}[x_t] = 0$$
, var $[x_t] = (1+\theta)^2 \sigma^2$, cov $[x_t, x_{t+1}] = -\theta \sigma^2$,

and $\forall |k| > 1$ covariances are 0. If $|\theta| > 1 \Rightarrow$ non-invertible representation of MA(1). That is,

$$x_t = \varepsilon_t - \theta \varepsilon_{t-1} \Rightarrow \varepsilon_t = (1 - \theta L)^{-1} x_t = \sum_{j=0}^{\infty} \theta^j x_{t-j}$$
 does not converge.

Solution: find an invertible representation (see Hamilton (1994)).

4. moving average MA(q):

$$x_t = \Theta(L)\varepsilon_t$$
, $\varepsilon_t \sim WWN$, $\Theta(L) := 1 - \theta_1 L - \ldots - \theta_q L^q$.

Always stationary. Invertible if roots of $\Theta(L)$ lie outside the unit circle. ε_t is called *innovation* if MA(q) is invertible.

5. **ARMA**(*p*, *q*):

$$\Phi(L)x_t = \mu + \Theta(L)\varepsilon_t$$
, $\varepsilon_t \sim WWN$.

Stationarity condition: roots of $\Phi(L)$ should be outside the unit circle. Invertibility condition: roots of $\Theta(L)$ should be outside the unit circle. Non-reducability condition: no common roots of $\Phi(L)$ and $\Theta(L)$.

Example 8. Sum of two independent MA(1) processes is MA(1), that is, MA(1) + MA(1) = MA(1) (see Hamilton (1994) for the proof).

Example 9. Sum of two independent AR(1) processes

• with equal coefficients is AR(1). That is, after summing up

$$(1 - \pi L)x_t = u_t$$
$$(1 - \rho L)w_t = \eta_t$$

we have $(1 - \pi L)(x_t + w_t) = u_t + \eta_t$, which is equivalent to $(1 - \pi L)y_t = \varepsilon_t$, that is, AR(1) process.

• with different coefficients is ARMA(2, 1). That is, after summing up

$$(1 - \pi L)(1 - \rho L)x_t = u_t(1 - \rho L) (1 - \pi L)(1 - \rho L)w_t = \eta_t(1 - \pi L)$$

we have $(1 - \pi L)(1 - \rho L)(x_t + w_t) = u_t(1 - \rho L) + \eta_t(1 - \pi L)$. We have two independent MA(1) processes on the right-hand side which is equal to MA(1) due to Example 8. Using the fact that $(1 - \pi L)(1 - \rho L) = (1 - \phi_1 L - \phi_2 L^2)$, we have

$$(1 - \phi_1 L - \phi_2 L^2) y_t = \varepsilon_t (1 - \gamma L)$$

which is ARMA(2, 1) process.

Example 10. In general, $AR(p) + AR(q) = ARMA(p + q, max\{p, q\})$.

5 Wold decomposition

Suppose $\{x_t\}_{t=-\infty}^{\infty}$ is weakly stationary. Then it can be decomposed as

$$x_t = d_t + \sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i},$$

where d_t is a deterministic part, $\psi_0 = 1$, $\sum_{i=0}^{\infty} \psi_i^2 < \infty$, ε_t is WWN. We call $\varepsilon_t = x_t - \text{Proj}\{x_t | x_{t-1}, \ldots\}$ the Wold innovation; d_t is perfectly predictable from the past, $d_t = \text{Proj}\{d_t | d_{t-1}, \ldots\}$.

Example 11. Some examples of the Wold decomposition:

- white noise: $\eta_t \Rightarrow d_t = 0$, $\psi_0 = 1$, $\psi_j = 0 \ \forall \ j \ge 1$,
- random variable: $x_t = Z$, $Z \sim \mathcal{N}(0,1) \Rightarrow d_t = Z$, $\varepsilon_t = 0$,
- AR(1) process: $(1 \phi L)x_t = \mu + \varepsilon_t$, $|\phi| < 1 \Rightarrow x_t = (1 \phi L)^{-1}(\mu + \varepsilon_t) = (1 \phi)^{-1}\mu + \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j}$; here, $d_t = (1 \phi)^{-1}\mu$ and $\psi_j = \phi^j$, $j \ge 0$.