

Instructor: **Stanislav Anatolyev / Yaroslav Korobka** Course: **Dynamic Modeling in Economics I** Discussion Session: **5** Date: December 6, 2024

Problem 1

Consider the following state space model:

 $x_t = \mu + y_t + z_t,$

where y_t and z_t are unobservable processes, y_t following MA(1) with MA-coefficient θ and innovations ε_t with variance σ^2 , and z_t following mean-zero stationary AR(1) with AR-coefficient ρ and innovations u_t (uncorrelated with ε_t at all lags and leads) with variance ς^2 .

- 1. Derive an ARMA process for x_t . Write out the process for x_t in a state space form with the state vector $(x_t, x_{t-1})'$ and innovation vector $(\varepsilon_t, u_t)'$. What is this vector process?
- 2. Google the stationarity/stability condition for vector ARMA processes and verify it for the process under consideration. Intuitively, why does it happen?
- 3. Google the invertibility condition for vector ARMA processes and show that the process under consideration is never invertible. Intuitively, why does it happen?
- 4. What is the long-horizon forecast for x_t (that is $\hat{x}_{t+h|t}$ for big *h* when the transitory dynamics dies out). What is the variance of the unpredictable part?

Problem 2

Consider the pure ARCH(1) model

 $\varepsilon_t = \sigma_t \eta_t$,

where i.i.d. $\eta_t \sim \mathcal{D}(0, 1)$ for some distribution \mathcal{D} with skewness γ_{η} and kurtosis κ_{η} , and

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2,$$

where $\omega > 0$ and $\alpha \ge 0$. Suppose the stationarity conditions hold.

- 1. Derive¹ the kurtosis coefficient κ_{ε} of ε_t when it exists. When does it exist?
- 2. Derive the autocovariance function of the process ε_t^2 .

¹Express it in terms of parameters σ^2 , α and κ_η only.

Problem 3

Consider the GARCH(1,1) model

$$\varepsilon_t = \sigma_t \eta_t,$$

where i.i.d. $\eta_t \sim \mathcal{D}(0, 1)$ for some distribution \mathcal{D} with skewness γ_{η} and kurtosis κ_{η} , and

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2,$$

where $\omega > 0$, $\alpha > 0$ and $\beta > 0$.

- 1. Derive the kurtosis coefficient κ_{ε} of ε_t when it exists. Express it in terms of parameters σ^2 , α , β and κ_{η} only. When does it exist?
- 2. Recall that the strict stationarity condition for ARCH(1) is $\mathbb{E}\left[\log\left(\alpha\eta_t^2\right)\right] < 0$. Derive the strict stationarity condition for GARCH(1,1).