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1 Panel data models

Problem 1

Suppose that the random effects model yit = x′itβ + ηi + vit is to be estimated with a panel in which the groups
have different numbers of observations. Let Ti be the number of observations in group i. Show that the pooled
least squares estimator is unbiased and consistent despite this complication.

Solution 1

The model is equivalent to

yi = Xiβ + vi + ηiι, yi ∈ RTi , Xi ∈ RTi×K, vi ∈ RTi , ι := (1, . . . , 1)′ ∈ RTi , i = 1, . . . , n,

and given the random effects model assumption, E[ηixit] = 0. The pooled OLS estimator of β is

β̂ =

(
n

∑
i=1

X′
i Xi

)−1 n

∑
i=1

X′
i yi

given that ∑n
i=1 X′

i Xi is invertible. To show the bias, rewrite

β̂ =

(
n

∑
i=1

X′
i Xi

)−1 n

∑
i=1

X′
i (Xiβ + vi + ηiι)

= β +

(
n

∑
i=1

X′
i Xi

)−1 n

∑
i=1

X′
i (vi + ηiι)

= β +

(
n

∑
i=1

X′
i Xi

)−1 n

∑
i=1

X′
i ui

with ui := vi + ηiι. Hence, the bias E[β̂ − β|Xi] is zero if E[X′
i ui|Xi] = X′

iE[ui|Xi] = X′
i (E[vi|Xi] + E[ηi|Xi]) =

0. It holds because the first expectation is zero by the i.i.d. independent mean zero errors vit, and the second
expectation is zero by the random effects assumption and the law of iterated expectations.

To show consistency, rewrite

β̂ − β =

(
1
n

n

∑
i=1

X′
i Xi

)−1(
1
n

n

∑
i=1

X′
i ui

)
.

As n → ∞, using the weak law of large numbers and Slutsky’s theorem, we have that

β̂ − β
p→ Q−1E[X′

i ui],

where limn→∞ n−1 ∑n
i=1 X′

i Xi = E[X′
i Xi] := Q is a non-deficient matrix with full rank. Under the random

effects assumption and arguments as above, we have that E[X′
i ui] = 0. Hence, the estimator is consistent.
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Problem 2

Consider yit = x′itβ + ηi + vit, i = 1, . . . , N, t = 1, . . . , T, where vit ∼ N (0, σ2) and β = 0. Write out the
likelihood for estimating ηi and σ2, and show that the MLE estimator σ̂2 is biased when T < ∞.

Solution 2

From the setup, it implies that yit ∼ N (ηi, σ2). The individual log-likelihood for each i (across T) is then

logL(yit|ηi, σ2) = C0 −
T
2

log σ2 − 1
2σ2

T

∑
t=1

(yit − ηi)
2

where C0 is some constant independent of ηi and σ2. The ML estimator of ηi is the solution to the equation

∂ logL(yit|ηi, σ2)

∂ηi
=

T

∑
t=1

(yit − η̂i) = 0,

which is η̂i = T−1 ∑T
t=1 yit := ȳi.

To estimate σ2, we use the joint log-likelihood (across i and T),

logL(yit|ηi, σ2) = C1 −
NT
2

log σ2 − 1
2σ2

N

∑
i=1

T

∑
t=1

(yit − ηi)
2

where C1 is some constant independent of ηi and σ2. The ML estimator of σ2 is the solution to the equation

∂ logL(yit|ηi, σ2)

∂σ2 = −NT
2

· 1
σ̂2 +

1
2σ̂4

N

∑
i=1

T

∑
t=1

(yit − η̂i)
2 = 0.

Substituting for η̂i and rearranging, we have

σ̂2 =
1

NT

N

∑
i=1

T

∑
t=1

(yit − ȳi)
2.

Expectation of the estimator is

E[σ̂2] = E

[
1
T

T

∑
t=1

(yit − ȳi)
2

]

= E

[
1
T

T

∑
t=1

y2
it −

2
T

T

∑
t=1

yitȳi +
1
T

T

∑
t=1

ȳ2
i

]

= σ2 − 2
T

T

∑
t=1

E[yitȳi] +
1
T

T

∑
t=1

E[ȳ2
i ]

= σ2 − 2
T

σ2 +
1
T

σ2 = σ2 − σ2

T
,

which is not equal to σ2 unless T → ∞.

Problem 3

Consider yit = 1{xitβ + ηi + vit ≥ 0}, where the errors vit have the logisic cdf. Consider T = 2, xi1 = 0 and
xi2 = 1, and show that the sufficient statistic for ηi is yi1 + yi2 = 1, i.e. conditioning on yi1 + yi2 = 1 implies
that the MLE does not depend on ηi.
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Solution 3

The log-likelihood function for two periods is given by

logL(yi|xi, β, ηi) = yi1 log Λ (xi1β + ηi) + (1 − yi1) log (1 − Λ(xi1β + ηi))

+ yi2 log Λ (xi2β + ηi) + (1 − yi2) log (1 − Λ(xi2β + ηi)) ,

where Λ(z) = 1/(1 + e−z), and given known values of the covariates,

logL(yi|β, ηi) = yi1 log Λ (ηi) + (1 − yi1) log (1 − Λ(ηi)) + yi2 log Λ (β + ηi) + (1 − yi2) log (1 − Λ(β + ηi)) .

Taking the first derivative w.r.t. ηi, and using Λ(z)′/Λ(z) = (1 − Λ(z)), we have

∂ logL(yi|β, ηi)

∂ηi
= yi1(1 − Λ(η̂i))− (1 − yi1)Λ(η̂i) + yi2(1 − Λ(η̂i + β))− (1 − yi2)Λ(η̂i + β) = 0,

which implies
yi1 + yi2 = Λ(η̂i) + Λ(η̂i + β).

Now, we discuss three cases:

1. if yi1 + yi2 = 0, η̂i = −∞,

2. if yi1 + yi2 = 2, η̂i = ∞,

3. if yi1 + yi2 = 1, −2η̂i = β, and η̂i = −β/2.

Hence, in the case 3., it is possible to identify ηi from the estimate of β only. It implies that conditional on
ζi := yi1 + yi2 = 1, the log-likelihood is independent on ηi making ζi a sufficient statistic.

Problem 4

Derive the bias of the OLS estimator for α in a dynamic panel of the form yit = αyit−1 + ηi + vit. Are there any
conditions on α that should hold for the estimator to be well-defined?

Solution 4

First, rewrite the model in recursive form,

yit = α (αyit−2 + ηi + vit−1) + ηi + vit

= α2 (αyit−3 + ηi + vit−2) + αηi + αvit−1 + ηi + vit

= . . .

= αty0 +

(
t−1

∑
s=0

αs

)
ηi +

t−1

∑
s=0

αsvit−s.

Problem 5

Consider the panel AR(1) model with individual effects,

yit = αyit−1 + ηi + vit

where ηi ∼ i.i.d.(0, σ2) and vit ∼ i.i.d.(0, σ2) are mutually independent, and for all i we have yi0 = 0. Derive
var [yit] for t = 1, . . . , T.

Problem 6

Assume that we are in the AR(1) dynamic model setup such that

yit = αyit−1 + ηi + vit

but now our vit follows an MA(1) process such that

vit = wit + bwit−1,

where wit ∼ i.i.d.(0, σ2
w) (i.e. vit is serially correlated). Show that in this case the instrument yit−2 is not a valid

instrument for estimating α with GMM in first differences, while the instruments yit−j for j ≥ 3 remain valid.
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Problem 7

We have data for a panel of companies on gross investment expenditures Iit and net capital stock Kit. We
model the investment rate yit = Iit/Kit as(

Iit
Kit

)
= α

(
Iit−1

Kit−1

)
+ ηi + vit,

and Table 1 shows the results of estimating the model in levels by OLS and WG, and the model in first differences
with one instrument, two instruments, and all Arellano-Bond instruments. For the last two estimators, it also
shows the Sargan test statistic and the m2 statistic for second-order serial correlation in the residuals from the
estimated model.

Table 1: Estimation results (703 firms, 4966 observations)

OLS WG 2SLS DIF GMM DIF GMM DIF

(1) (2) (3) (4) (5)

α̂ 0.2669 −0.0094 0.1626 0.1593 0.1560

(.0185) (.0181) (.0362) (.0327) (.0318)

m2 0.52 0.46

Sargan test 0.36 0.43

Instruments (I/K)t−2 (I/K)t−2 (I/K)t−2

(I/K)t−3 (I/K)t−3
...

(I/K)1

a) For each of the models in columns (2) and (3), write down the estimated equation(s).

b) Comment on the estimates of α in each of the columns. Are the results in line with theory (in terms of
possible bias of the different estimators)? Why do we need to use instruments?

c) Comment on the standard errors of the last three estimators. Are the results in line with theory?

d) For the two GMM estimators (column (4) and (5)), what do you conclude from the two specification
tests? What are these tests’ null hypotheses and why are these useful to run?

Problem 8

Formulate a linear dynamic panel regression with a single weakly exogenous regressor, and AR(2) feedback in
place of AR(1) feedback (i.e. when two most recent lags of the left side variable are present at the right side).
Describe the algorithm of estimation of this model.

2 Causal inference
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