

Name: Paolo Zacchia / Yaroslav Korobka Course: Statistics

Updated: June 18, 2025

1 Finite-sample properties

Problem 1

Assume that X_i are i.i.d. with $\mathbb{E}[X_i] = \mu$ and var $[X_i] = \sigma^2$. Define the sample average as $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ with i = 1, ..., n.

- (a) Find $\mathbb{E}[\bar{X}_n]$.
- (b) Find var $[\bar{X}_n]$.
- (c) Show that

$$\mathbb{E}\left[\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}\right] = 0 \quad \text{and} \quad \text{var}\left[\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}\right] = 1.$$

Problem 2

Assume that $X_i \sim \mathcal{N}(\mu_x, \sigma_x^2)$ with $i = 1, ..., n_x$, $Y_i \sim \mathcal{N}(\mu_y, \sigma_y^2)$ with $i = 1, ..., n_y$ and $X_i \perp Y_i$.

- (a) Find $\mathbb{E}[\bar{X}_n \bar{Y}_n]$.
- (b) Find var $[\bar{X}_n \bar{Y}_n]$.
- (c) Find the distribution of $\bar{X}_n \bar{Y}_n$.
- (d) Find the distribution of $\bar{X}_n + \bar{Y}_n$.
- (e) Find the distribution of $S_x = \frac{n_x \hat{\sigma_x^2}}{\sigma_x^2}$ where $\hat{\sigma_x^2} = \frac{1}{n} \sum_{i=1}^{n_x} (X_i \bar{X}_n)^2$ is the sample variance.
- (f) Find the distribution of $\frac{n_x \hat{\sigma}_x^2}{(n_x 1)\sigma_x^2} / \frac{n_y \hat{\sigma}_y^2}{(n_y 1)\sigma_y^2}$ using the following theorem:

Theorem 1 (Ratio of χ^2 as *F*-distribution). Let $Z_1 \sim \chi^2_m$, $Z_2 \sim \chi^2_p$ where $m, p \in \mathbb{N}$ and $Z_1 \perp Z_2$. Then

$$\frac{Z_1}{m} \bigg/ \frac{Z_2}{p} \sim F(m, p) \, ,$$

that is, ratio has an F-distribution with m and p degrees of freedom.

Which kind of hypothesis could we test using the statistic above?

Problem 3

Suppose that the random variables Y_1, \ldots, Y_n satisfy

$$Y_i = \beta x_i + \epsilon_i, \quad i = 1, \dots, n_i$$

where x_1, \ldots, x_n are fixed constants, and $\epsilon_1, \ldots, \epsilon_n$ are i.i.d. $\mathcal{N}(0, \sigma^2)$ with σ^2 unknown.

- (a) Show that $\hat{\beta} = \sum Y_i / \sum x_i$ is an unbiased estimator of β .
- (b) Show that $\tilde{\beta} = \left[\sum Y_i / x_i\right] / n$ is also an unbiased estimator of β .
- (c) Calculate the exact variances of estimators from (a) and (b). Which one would you prefer?

Problem 4

Assume that X_1, \ldots, X_n are i.i.d. with $\mathcal{N}(\mu, \sigma^2)$. Find a constant *c* that satisfies $\mathbb{E}[g(S^2)] = \sigma$ where $g(S^2) = c\sqrt{S^2}$ is the function of the sample variance.

2 Maximum likelihood estimation

Problem 1

A random variable *X* is said to have a Pareto distribution with parameter β , denoted as $X \sim \text{Pareto}(\beta)$, if it is continuously distributed with density

$$f_X(x;\beta) = \begin{cases} \beta x^{-\beta-1}, & \text{if } x > 1, \\ 0, & \text{otherwise.} \end{cases}$$

A random sample x_1, \ldots, x_N from the Pareto(β) population is available. Derive the maximum-likelihood estimator of β . Does it maximize the log-likelihood function?

Problem 2

Suppose that the random variables Y_1, \ldots, Y_n satisfy

$$Y_i = \beta x_i + \epsilon_i, \quad i = 1, \dots, n,$$

where x_1, \ldots, x_n are fixed constants, and $\epsilon_1, \ldots, \epsilon_n$ are i.i.d. $\mathcal{N}(0, \sigma^2)$ with σ^2 unknown. Find the MLE of β . Is it unbiased?

Problem 3

Let x_1, \ldots, x_N be a random sample from a gamma(α, β) population.

- (a) Find the MLE of β , assuming α is known.
- (b) If α and β are both unknown, there is no explicit formula for the MLE of α , but the maximum can be found numerically. How can we use the result in part (a) to reduce the problem to the maximization of a univariate function?

Problem 4

Let x_1, \ldots, x_N be a sample from the inverse Gaussian p.d.f.,

$$f_X(x;\mu,\lambda) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left\{\frac{-\lambda(x-\mu)^2}{2\mu^2 x}\right\}, \ x > 0.$$

Show that the MLEs of μ and λ are

$$\hat{\mu}_{ML} = ar{x}$$
, and $\hat{\lambda}_{ML} = rac{N}{\displaystyle\sum_{i=1}^{N} rac{1}{x_i} - rac{1}{ar{x}}}.$

Problem 5

The independent random variables X_1, \ldots, X_N have the common distribution

$$P(X_i \le x; \alpha, \beta) = \begin{cases} 0, & \text{if } x < 0, \\ \left(\frac{x}{\beta}\right)^{\alpha}, & \text{if } 0 \le x \le \beta, \\ 1, & \text{if } x > \beta. \end{cases}$$

where the parameters α and β are positive. Find the MLEs of α and β .

Problem 6

Suppose that the random variables Y_1, \ldots, Y_n satisfy

$$Y_i = \beta x_i + \epsilon_i, \quad i = 1, \dots, n,$$

where x_1, \ldots, x_n are fixed constants, and $\epsilon_1, \ldots, \epsilon_n$ are i.i.d. $\mathcal{N}(0, \sigma^2)$ with σ^2 unknown.

- a) Find the MLE of σ^2 .
- b) Obtain the Fisher information matrix.

Problem 7

Let X_1, \ldots, X_N are identically and independently distributed as

$$f_X(x,\lambda) = \lambda \exp(-\lambda x).$$

- a) Find the MLE of λ .
- b) Obtain the Fisher information for λ . Does Information Equality Matrix holds in this case?
- c) Calculate the MLE of λ numerically.

3 Asymptotic theory

Problem 1

Consider a random variable X_N with the probability distribution

$$X_N = \begin{cases} -N, & \text{with probability } \frac{1}{N}, \\ 0, & \text{with probability } 1 - \frac{2}{N}, \\ N, & \text{with probability } \frac{1}{N}. \end{cases}$$

- a) Does $X_N \xrightarrow{p} 0$ as $N \to +\infty$?
- b) Calculate $\mathbb{E}[X_N]$ and var $[X_N]$. Now suppose that the distribution is

$$X_N = \begin{cases} 0, & \text{with probability } 1 - \frac{1}{N}, \\ N, & \text{with probability } \frac{1}{N}, \end{cases}$$

and calculate $\mathbb{E}[X_N]$.

c) Is it true that if $X_N \xrightarrow{p} 0$ as $N \to +\infty$, then $\mathbb{E}[X_N] \to 0$?

Problem 2

Assume having a random variable *Y* and a random sample y_1, \ldots, y_N . Which statistics converge in probability by the Weak Law of Large Numbers (WLLN) and Continuous Mapping Theorem (CLT)? Existence of which moments do we need to assume?

a)
$$\frac{1}{N} \sum_{i=1}^{N} y_i^2$$
.
b) $\frac{1}{N} \sum_{i=1}^{N} y_i^3$.

c) max_{1 \le i \le N} y_i .

d)
$$\frac{1}{N} \sum_{i=1}^{N} y_i^2 - \left(\frac{1}{N} \sum_{i=1}^{N} y_i\right)^2$$
.
e) $\frac{\frac{1}{N} \sum_{i=1}^{N} y_i^2}{\frac{1}{N} \sum_{i=1}^{N} y_i}$.
f) $\mathbb{1}_{[0,+\infty)} \left(\frac{1}{N} \sum_{i=1}^{N} y_i\right)$.

Problem 3

Take a random sample x_1, \ldots, x_N , where X > 0. Consider the sample geometric mean

$$\hat{\mu} = \left(\prod_{i=1}^{N} x_i\right)^{\frac{1}{N}}$$

and a population geometric mean

Assuming μ is finite, show that

 $\hat{\mu} \xrightarrow{p} \mu.$

 $\mu = \exp\left(\mathbb{E}[\log(X)]\right).$

Problem 4

Let X_1, X_2, \ldots be a sequence of i.i.d. $\mathcal{U}(0, 1)$ random variables. Define the sequence Y_N as

$$Y_N = \min\left(X_1, \ldots, X_N\right).$$

Show that $Y_N \xrightarrow{p} 0$ as $N \to \infty$.

Problem 5

Suppose $X_1, X_2, ...$ are i.i.d. with mean and variance μ and σ^2 . Consider

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X}_N)^2,$$

where $\bar{X}_N = \frac{1}{N} \sum_{i=1}^N X_i$. Show that $\hat{\sigma}^2 \xrightarrow{p} \sigma^2$ as $N \to \infty$.

4 Generalized method of moments

Problem 1

Let X_1, \ldots, X_N be i.i.d. with finite forth moment. Let \bar{X}_N and \bar{X}_N^2 be the sample averages of X and X^2 respectively. Find constants a and b and function c(N), such that the vector sequence

$$c(N)\begin{pmatrix} \bar{X}_N-a\\ \bar{X^2}_N-b \end{pmatrix}$$

converges to a nontrivial distribution, and determine this limiting distribution. Derive the asymptotic distribution of the sample variance $\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X}_N)^2$ using the Delta method.

Problem 2

Denote by $\hat{\alpha}_{MM}$ and $\hat{\beta}_{MM}$ the method-of-moments (MM) estimators of α and β parameters of the gamma distribution. Derive the asymptotic distribution of $\hat{\theta}_{MM} = \begin{pmatrix} \hat{\alpha}_{MM} \\ \hat{\beta}_{MM} \end{pmatrix}$. How can we obtain the asymptotic distribution using the Delta method?

Problem 3

Let X_1, \ldots, X_N be i.i.d. random variables with $f_{X_i}(x; \lambda) = \lambda \exp(-\lambda x)$.

- a) Recall the MLE for λ , derive its asymptotic distribution and the confidence interval for $\hat{\lambda}_{ML}$.
- b) Derive the MM estimator for λ and its asymptotic distribution.

5 Linear regression

Problem 1

Let Y be a random variable that denotes the number of dots obtained when a fair six sided die is rolled. Let

$$X = \begin{cases} Y, & \text{if } Y \text{ is even,} \\ 0, & \text{if } Y \text{ is odd.} \end{cases}$$

- a) Find the joint distribution of $\begin{pmatrix} X \\ Y \end{pmatrix}$.
- b) Find the optimal predictor of Y given X.
- c) Find the optimal linear predictor.

Problem 2

Answer the following questions as *true* or *false* and elaborate on your answer.

- a. Consider a sample $\{x_i\}_{i=1}^N$ whose observations are all drawn from and *identical* random variable X with finite moments. For $\mathbb{E}[\bar{X}] = \mathbb{E}[X]$ to hold, where $\bar{X} = N^{-1} \sum_{i=1}^N X_i$ is the sample mean, this sample must be *random* (i.i.d.).
- b. Consider a univariate random (i.i.d.) sample $\{X_1, ..., X_N\}$. The random variable X from which the sample is drawn has mean and variance denoted as $\mathbb{E}[X]$ and var [X] respectively. Consider the following statistic S^* , which is a *variation* of the sample variance S^2 ,

$$S^* = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mathbb{E}[X])^2.$$

It turns out that $\mathbb{E}[S^*] = \operatorname{var}[X]$.

c. Consider two random (i.i.d.) samples $\{x_i\}_{i=1}^{N_X}$ and $\{y_i\}_{i=1}^{N_Y}$. The first sample is drawn from a normally distributed random variable $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$, while the second sample is drawn from another normally distributed random variable $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. To test that the scale parameters of the two distributions are equal $(H_0 : \sigma_X^2 = \sigma_Y^2)$ one can use the *F*-statistic:

$$F = \frac{S_X^2 / \sigma_X^2}{S_Y^2 / \sigma_Y^2}$$

and this is possible if the two samples have different size, i.e. $N_X \neq N_Y$.

d. Consider a random (i.i.d.) sample $\{x_i\}_{i=1}^N$ whose observations are drawn from some random variable *X*. Suppose that the Weak Law of Large Numbers applies: $\bar{X} \xrightarrow{p} \mathbb{E}[X]$. It follows that $\bar{X} \xrightarrow{q.m.} \mathbb{E}[X]$, i.e. the sample mean \bar{X} converges *in quadratic mean* to $\mathbb{E}[X]$.

Problem 3

Consider a linear regression model with *K* regressors arranged in a vector x_i ,

$$\mathbb{E}[Y_i|x_i] = x_i'\beta_0 \Rightarrow \beta_0 = \mathbb{E}[x_ix_i']^{-1}\mathbb{E}[x_iY_i].$$

Via the Continuous Mapping Theorem, prove the following asymptotic property about the average Total Sum of Squares (TSS),

$$\frac{1}{N}\sum_{i=1}^{\infty}e_i^2 = \frac{1}{N}e'e = \frac{1}{N}y'My \xrightarrow{p} \mathbb{E}[Y_i^2] - \mathbb{E}[Y_ix_i'\beta_0].$$